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Resonant interactions in flows over rigid and flexible walls are studied. Attention is 
concentrated on symmetric, three-dimensional wave triads as proposed by Craik 
(1971). Location of resonant triads and evaluation of interaction coefficients are 
performed numerically, for a wide range of Reynolds numbers and wavenumbers, 
considering the temporal stability problem. Good agreement is found with previous 
work. It is shown that triads comprising various combinations of Tollmien- 
Schlichting and/or wall modes are possible, and have some interesting features ; 
also, the possibility of interaction with Squire modes must not be overlooked. 

1. Introduction 
The linear stability of flows over flexible boundaries has been comprehensively 

studied in recent years (see for example Carpenter & Garrad 1985, 1986; Yeo 1986; 
Carpenter 1990). The main purpose of these analyses has been to try and determine 
the extent to which flexible walls are capable of delaying transition from laminar to 
turbulent flow, and of reducing drag on marine craft. Many of the experiments that 
have been performed (e.g. those of Gad-el-Hak, Blackwelder & Riley 1984) strongly 
indicate that three-dimensionality (and hence perhaps nonlinearity) is even more 
prominent than for rigid-wall flows. Also, the multiplicity of modes in flexible-wall 
flows suggests that nonlinear modal interaction (in the form of resonant triads, for 
example) may often be of importance, especially when there is no linear mode 
coupling. Despite this, there has as yet been little theoretical work on the nonlinear 
stability problem, although Rotenberry & Saffman (1990) have studied the effect of 
compliant walls on the weakly nonlinear stability of plane Poiseuille flow. 

We shall focus on resonant triad interactions of the type proposed by Raetz (1959), 
which were subsequently studied by Craik (1971). Such interactions are important 
because in many instances they will be the first nonlinear flow modification to occur, 
being O(A2) phenomena rather than O(A3) as is more generally the case ( A  is a 
characteristic wave amplitude). Previous work on rigid-wall flows (Usher & Craik 
1974,1975 ; Volodin & Zel’man 1979) has shown that oblique modes are preferentially 
amplified by the resonant triad interaction, and this may often account for the rise 
of three-dimensionality in the laminar-turbulent flow transition process. Indeed, the 
experiments of Kachanov & Levchenko (1984), and others, provide some support for 
this viewpoint. 

The parametric subharmonic mechanism of Herbert (1983, 1988) is related to the 
Craik mechanism, but the precise nature of the relationship is a little unclear. 
Experiments (Saric & Thomas 1984) indicate that the Herbert (or ‘H-type’) 

t Present address : Department of Engineering, University of Warwick, Coventry CV4 7AL, UK. 
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mechanism requires slightly higher initial amplitudes than that of Craik (‘ C-type ’) 
in order to occur. The elegance and simplicity of the C-type resonant triads make 
them eminently suitable, we believe, for our preliminary study of nonlinear stability 
of flows over flexible walls. 

In this work we consider Blasius flows over a simple model wall. Temporal 
eigenvalues of the Orr-Sommerfeld (0s) equation, resonant triads and interaction 
coefficients are found by numerical integration. Parallel flow is assumed throughout 
the Blasius solution is in fact only ‘nearly parallel’. Previous work (for example 
Smith 1979) has shown that parallel and non-parallel theories give broadly similar 
results, the major discrepancy being an extension to the tip of the neutral curve, 
which gives improved agreement with experiment. Temporal wave modes are 
investigated in preference to spatial ones chiefly because they present a slightly more 
tractable numerical task. 

Our simple wall model is representative of a membrane supported by springs: 

a2r] a7 
at2 at 

N =  m-+d- -FV27+Sy ,  

such as was used by Benjamin (1963). In (1 a) N is the normal stress at the fluid-solid 
interface, r] is the vertical displacement, and V = a/ax i+a/ad.  In our chosen 
coordinate frame x, y and z denote the streamwise, transverse and normal directions 
respectively. It is assumed that there is no lateral wall motion. The parameters may 
be assigned particular physical identities, for example those characteristic of a 
stretched membrane: m would then be the effective membrane mass per unit area, 
d a damping coefficient due to viscous or frictional effects, F the tension per unit span 
of the membrane and S its effective spring stiffness. 

In  practice, the compliant material may well be of complex construction. The 
‘Kramer surfaces ’ discussed by Carpenter & Garrad (1985), for example, consisted of 
a layer of pliable rubber-like material supported on a rigid base by an array of closely 
spaced flexible stubs, with viscous fluid in the gap between them. Detailed 
mathematical analysis of such composite materials is impracticable, and so they are 
best represented by judicious choice of parameters in models like that just 
introduced. Usually, however, the effective mass, stiffness and so on will not be 
constants, but will depend on the lengthscale of the disturbance. Accordingly, it is 
best to replace ( la)  by a corresponding representation of the stress N(k) associated 
with each individual Fourier mode c(k) ,  proportional to exp (ik-x-iwt), with real 
wavenumber k and (perhaps complex) frequency w ( k )  ; namely 

N(k) = [ - m w 2 - i d w + Q ] [ ,  (1 b )  

where Q is the restoring force and m, d (and perhaps S) are permitted to be prescribed 
functions of k = Ikl. We shall assume, for simplicity, that m, d and S are constants, 
but Q will be given by Q = Tk2 + S ,  where T = F cos 8 , 0  being the angle between the 
direction of wave propagation and the basic flow. The Fourier-mode representation 
is discussed in more detail by Thomas & Craik (1988). 

Despite our concern with a nonlinear problem, the stress representations ( la)  or 
( b )  are linear ones in the wave elevation 7 or its individual Fourier components. This 
representation may be altered by additional nonlinear terms - see Thomas & Craik 
(1988). For present purposes it is advantageous to restrict the number of independent 
wall parameters while retaining a reasonable degree of realism. More complex models 
may be examined by similar methods, if required. 
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All quantities, including those pertaining to oblique modes, are non-dimen- 
sionalized using appropriate combinations of Urn, pe and the boundary-layer 
thickness 6, which we define to be 6 = 5(uz/U,)i .  The Reynolds number R is defined 
with respect to 6, i.e. R -= U,  S / u .  The wall parameters are non-dimensionalized in 
the following way : 

where ci = m-lF and an asterisk denotes dimensional quantities. This scheme is akin 
to that of Domaradzki & Metcalfe (1987). R can be taken to vary with 6 ,U ,  or u :  here 
we assume that U ,  and u are fixed, and R varies only as 6 changes, that is, with x. 
If allowance is not made for this, different walls will be modelled a t  different 
Reynolds numbers. Thus we define reference values m(O) of m and S(O) of S at some 
Reynolds number Ro, and m and S vary according to 

Note that R may alternatively be taken to be a function of U, rather than of 6. 

2. The linear problem 

is assumed to be parallel, satisfying the Blasius equation 
Here we consider two-dimensional disturbances only. The basic flow Q = U(x) /U,  

f”‘+ff“ = 0, (4) 

where f’(x) = ~ ( z )  and x = ( 5 / 1 / 2 ) z ;  primes here denote differentiation with 
respect to x. Boundary conditions are 

f(0) =f’(O) = 0 ,  f ’ (x) -+l  as x+-00, (5% b,  c )  

corresponding to the physical requirements that the flow should be stationary at the 
wall and reach some constant value at  a certain distance from the wall. A stream 
function @ is defined by u = a@/&, w = a@/ax. We consider arbitrary small 
disturbances of the form @* = E$(z) exp (iax-iact), E < 1, and substitute for the 
total stream function @ = j adz+@,  into the vorticity equation 

On neglecting 0 ( e 2 )  quantities, this yields the 0s equation : 

L[$]  = ia[ (a- c)($” -a2$) - d’$] - l/R( $”” - 2a2$” + a”) = 0. (7) 

~ ( 7 )  = 0, ~ ( 7 )  = (a/at+u.v)r; U , W + O  as z + a .  (8a-d) 

The boundary conditions for (7) are, in terms of the perturbation velocities: 

These correspond to requirements of no slip at the wall, and zero perturbation 
velocities far outside the boundary layer. Performing Taylor expansions of the first 
two about the undisturbed wall position yields at first order 

$’(O) + q d ( 0 )  = 0, (9) 

$ ( O ) - C V  = 0. (10) 
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Elimination of 11 gives the homogeneous condition 

d(0) 
$ ' ( O ) + C $ ( O )  = 0. 

We require one other boundary condition at  the wall, and this is obtained from a 
consideration of the normal stress : 

From the x-momentum equation 

aP 1 
ax R 

au 
--+u.vu = ---+-v,u, 
at 

and using (11) we have 
1 

lcLR 
p ( 0 )  = - ($"'(O) -a2$'(0)). 

The quantity N ( q )  is as given in (1 a) ,  with appropriate notational changes. From 
( la) ,  (lo), (12) and (14) we obtain 

$"'(O) - 3a2$'(0) -B$(O) = 0, (15) 

(16) 
i d  

where R = - [ma2(c2 -ci) + iacd-81. 
C 

The free-stream boundary conditions in terms of $ are 

$(z ) ,  $ ' (z)  + 0 as x + 00. (17% b )  

Equation (7)  together with the boundary conditions ( l l ) ,  (15) and (17) constitute an 
eigenvalue problem for c ( a ,  R ) .  

For the rigid-wall case, (17) is unchanged but ( 1 1 )  and (15) are replaced by 
$(O) = $'(O) = 0 (since u(0) = w(0) = 0). 

3. The nonlinear problem: resonant triads 
The formulation of the resonant-triad problem for flow over a flexible boundary is 

a reasonably straightforward extension of that for rigid walls given elsewhere (Craik 
1971) : however, care must be taken in deriving the wall boundary conditions for the 
adjoint system, since these cannot be obtained from any physical considerations. 
Hence the analysis will be given in detail. We consider a triad of waves defined by 

m 

Qj = 3 [eiq!4.")(2)Af)(t)]Ei, j = 1 , 2 , 3 ,  
1=1 

i 
where E ,  = exp{i($xx+py-$ac"t)}, 

E, = exp {i(&t - x - /3y - &zc"t)}, 

E, = exp{i(ax-act)}. 

Exact resonance requires that E, = c,. An ordering parameter E has been introduced, 
so that all perturbation quantities are O ( E )  with O ( E )  corrections. The amplitudes are 
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assumed to be slowly varying on a stretched timescale 7 = st. It is convenient to write 
(cf. Craik 1971) 

(20) 

where y = (~aa"+/32)~. The velocities &l,2, are defined in the directions G l , a ,  g1,2, 
which are respectively perpendicular and parallel to the crests of the relevant oblique 
wave : 

From the definitions (18) and (19) it follows that 

u 1 . 2  = a/2Y 4 2  T P l Y  4 * 2 ,  Vl, a = f B/Y 4 . 2  + "/2Y 41.2 ,  

21,2 =a/2Yx+B/YY, $ 1 2  = TB/Y"+"/2YY. (21) 

d1, = C [ E ~ $ ~ ~ ) ' ( Z ) A ~ ~ ) ( ~ ) ] E ~ , ~ ,  w1,2 = - i y x  [st$:"(z)A:l)(t)]El, 2. (22) 
(-1 1-1 

The linearized vorticity equation for the 3-wave gives the 0s equation 

L3[q4] = ia[(a-c)($j.-a2q53)-@$3]- 1/R ($;"-2~~$j .+a~$~) = 0, 

= $$l). We now define an oblique Reynolds number a by 

(23) 

where 

a = aR/2y, (24) 

giving for the l-wave and 2-wave equations equivalent to (23) 

~51,2[$1,21 i ~ [ ( ~ - ~ ( $ ~ , a - ~ ~ $ ~ , z ) - ~ $ l , 2 1 - 1 / ~  ($~:'2-2~~$OI,2+~~$1,2) = 0, 
(25) 

= @ti. Equations (20) and (24) constitute a Squire transformation where $1 

(Squire 1933). 
The linearized momentum equations in the $ l , z  directions yield 

B~,,-[y2+iy~(~-c")]4, , ,  = ki,!?RU"qi,,,. (26) 

The velocity components 41,2 arise because of the distorting influence of the basic 
shear flow on oblique wave modes. The boundary conditions for (23) are just (ll), 
(15) and (17) with appropriate quantities subscripted by 3. For (25), however, the 
wall boundary conditions depend critically on the type of wall being modelled. In  this 
work we shall consider an idealized orthotropic wall: the effective wall tension 
experienced by obliquely propagating wall modes is assumed to be F cose (that is, 
(a/2y)F) rather than just F ;  0 is the angle between the directions of propagation of 
the oblique wave and the basic flow. More complicated anisotropic models are of 
course possible, and indeed have been investigated elsewhere in the context of the 
linear stability problem (for example Yeo 1986; Carpenter & Morris 1990), but our 
simple model is appropriate for this exploratory study. At O(s) we have for the 1- 
wave 

$;(o) = -42Y G(0)71> (27) 

$l(O) = a/2Y 4 1 ,  (28) 

which gives $;(o) + U"/C"(O) (bl(0) = 0. (29) 

The normal stress is 

and the z-momentum equation 

aP 1 au 
at ax R 
-+u.vu = - - + - V u  
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Thus we obtain the second wall boundary condition as 

where (34) 

Note that in (30)-(34) the Reynolds number is the original one, not that defined by 
(24). This can be verified by rederiving the boundary condition in dimensional units, 
and then non-dimensionalizing according to the scheme given above. The two 
boundary conditions for (26) are 

The first of these results from the requirement that tangential velocity be zero at  the 
wall, and the second follows on observing that G = 1 outside the boundary layer. As 
was found by Craik (1971), at O(s2) the nonlinear vorticity equations are 

where 6, = $j2), j = 1 ,2 ,3 ,  and F,, F, ,F,  are bilinear in the first-order disturbance 
quantities.? In the remainder of this section the index j takes the values 1,2 ,3 ,  
corresponding to the three constituents of the triad. The wall boundary conditions 
for (37) are found after considerable algebraic manipulation to be 

(q0) + a‘/c, &O) = p y ,  

67(0) -3kj &(O)  -Bj $j(O) = pi”, 
( 3 8 4  

(38b) 
where the O(e2) terms p, represent nonlinear forcing? and kl,2 = y ,  k, = a ;  cl,, = F,  
c3 = c. The three pairs of free-stream boundary conditions are the same as for the 
linear problem, i.e. 

$,(z),$i(z)+O as z+m, j= 1,2 ,3 .  (39% b )  

In order to solve (37), we now consider the linear system adjoint to (23) and (25), 

Lf[$,] = ik,[ (G- c,) $,In - ik,[kj(z- c,) + $1 $, - 1/R, (I&‘‘ - 2kj $; + k; $,) = O(40) 
(see e.g. Ince 1956, §9.31), where Rl,2 = a and R,  = R. The expressions L,[$,] and 
LJ[$J are related by the Lagrange identity 

(41 1 

viz . 

$+,[$,I- $,Lf[$,l = d/dz [p,($, $)I1 

where q($, $) is the bilinear concomitant, defined by 

q$> $1 = - l / R * [ $ , ( $ ~ - k j $ ~ ) - $ , ( $ ~ - k ~ $ ~ ) + # i ( $ ~ - k ~ $ , )  

-@i($;-kj $ j )  +ikjRj ( @ - ~ j ) ( $ j  $ i - $ j  4;) + ikjRj a’#, $,I. (42) 
t These expressions are omitted for brevity. Copies may be obtained from the author or editorial 

office. 
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Integration across the range of the independent variable yields Green’s formula 

Note that the range of integration is 0 to CQ. This is because we have eliminated the 
O(c2) wall displacement 7, from the second-order wall boundary conditions (38), 
writing the left-hand sides in terms of 6, only, and evaluating at the undisturbed wall 
position z = 0. In order to solve the linear flow equations numerically we of course 
have to impose outer boundary conditions at some finite value of z, but it is 
inappropriate to introduce these approximations at this stage (the formulation of the 
outer boundary conditions for numerical purposes will be discussed later). 

We now rewrite the right-hand side of (43) as 

where 

The O(c2) boundary conditions for $, may now be re-expressed in terms of Ul,), u,) uf) and U(j) : 
2 ,  3 4 

u,) 1 = pi,’, u,) 2 = pi,), uy = 0, up = 0. (47) 
The general theory of differential systems (Ince 1956, $9.34) then attests that the 
boundary conditions for the homogeneous adjoint system must be 

q”=O, i =  1 4 .  (48) 
Furthermore, in order for the principal system given by (37), (38) and (39) to have 
a solution the following relation must obtain : 

l+, r ( f )  dz = pi,) JAr )  +pi,) J,N). 
8 7 

After some rearrangement of (49)’ we arrive at  the evolution equations 

(49) 
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The quantities u, and Q are lengthy and we do not give them here?. We define the 
quadratic interaction coefficients a, by a, = [,/a,, j = 1,2,3. For the rigid-wall case, 
the a, have the form 

p , S a d Z  pl, 2 $1. 2 dz 
9 

a3 = A m '  = $1, 2 ( K ,  2 -Y241. 2)  dz 

(50 c, d )  
and are obtained as a special case: the reader is referred to Craik (1971) for the 
derivation of ( ~ O C ,  d ) .  

4. Numerical method 
An extension of the finite-difference method of Thomas (1953) was used for the 

boundary-layer computations presented below. This method utilizes a Noumerov 
auxiliary function to increase the accuracy of the differencing. The equations to be 
solved for the resonant-triad problem are: firstly the 0s equation (23); then its 
adjoint, from (40) ; then the oblique 0s equation for the l-wave from (25), followed 
by its adjoint from (40) ; and finally the cross-flow equation for the l-wave, from (26). 
For the linear, two-dimensional problem we only solve (23). 

Approximations to the exact outer boundary conditions (17) and (36) are imposed 
at z = z1 = 2.53, and 1000 grid points are used. The two physically relevant solutions 
of the 0s equation are those which exhibit exponential decay at  the respective rates 
( -az) and ( -pz) ,  where p = [a2 + iaR( 1 - c)]i, the root with positive real part being 
taken. The general solution at  large is then simply a linear combination of these two 
solutions so that 

q5 - A  e-az+Be-*Z, 

where A ,  B are constants. The simplest differential operator which will annihilate the 
right-hand side above is (D + a ) ( D  + p ) ,  D = d/dz, so the most appropriate numerical 
forms of the outer boundary conditions (3.7a, b )  to be used at z = zl, say, are 

f + ( a + p ) $ ' + a p $  = 0, $"'+(a+p)$"+ap$' = 0. 

(These were suggested by Gill & Davey 1969). For the cross-flow velocity 'ul, we 
approximate (36) by $(z1) = [y2+iyA(1 -c")]i vl(zl), the root with negative real part 
being selected. 

The program used by the author was developed from one supplied by Professor 
P. K. Sen. Eigenvalues are located by a combination of Newton-Raphson and regula 
falsi convergence schemes. The transverse wavenumber p for resonance is determined 
using the bisection method within the calculation of the eigenvalue c" subject to the 
condition that E, = c,. The iterative scheme in general requires a reasonably good 
initial estimate for the eigenvalue in order to converge, but this was often not 
available. Hence an alternative scheme based on the Principle of the Argument (PA) 
was developed, following Yeo (1986). A closed contour is traced out anticlockwise in 
the complex phase-speed plane, and the accumulated change in arg {det[A,]} is 2nx 
if n eigenvalues are enclosed in the contour (assuming there are no singularities). If 
an eigenvalue is enclosed, the procedure is repeated continually using a reduced 
contour enclosing half the area of the original until at  a prescribed limit the iteration 

t Copies may be obtained from the author or editorial office. 
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procedure is invoked. This method is reliable, but costly in CPU time since the step 
length along the contour must be sufficiently small to avoid bypassing any loops. 
Hence the PA scheme was only used in the event of failure of the original initial-guess 
iteration routine. 

Note that the 0s equation and its adjoint have identical eigenvalue spectra: 
adjoint eigenfunctions were found by inserting the appropriate computed 0s 
eigenvalue into the adjoint eigensystem. The error was then easily gauged from the 
magnitude of the bottom element of the upper-diagonal matrix which arises in the 
solution procedure. (This element is zero when the computed eigenvalue is exact.) 
Adjoint eigenvalues were also computed directly for a few cases, as an additional 
check. 

The author has made a detailed comparison of his rigid-wall results with those of 
Hendriks (appendix to Usher & Craik 1975). Agreement is very good both for the 
linear data (that is, eigenvalues and eigenfunctions), and for the nonlinear data (that 
is, quadratic interaction coefficients), which confirms the soundness of both authors’ 
numerical methods. More detail cannot be given because of space constraints. 

Calculations were performed on a VAX 11/785 computer at  the University of St. 
Andrews, and on Sun-4 workstations a t  the University of Exeter, using double 
precision arithmetic. 

5. Linear results 
5.1. WaEls without damping 

Eigenvalues for various values of a, R and the wall parameters m(O), co, S(O) have been 
calculated, and some of these are presented in figure 1. Here streamwise modes only 
are considered, and there is no wall damping (d = 0). As explained above, the 
quantities m(O) and S(O) are the values of mass per unit area and wall restoring force 
at  a reference value R, of R (taken, arbitrarily, to be 2562.8 throughout). Three 
classes of wave mode were found, namely Tollmien-Schlichting (TS), wall flutter 
modes (which will be labelled F modes, and correspond to free waves on the flexible 
wall) and a class of slow-moving wall mode typically propagating upstream and 
having weak rates of amplification or damping (S modes). This latter class 
corresponds to the ‘Kelvin-Helmholtz’ (KH) mode class of Sen & Arora (1988). 
Examples of the three mode classes are shown in figure 1. 

In the absence of modal interactions, TS mode eigenvalues are typically very 
similar to their rigid-wall counterparts, having c, values between about 0.25 and 0.5 
for the Reynolds numbers and wavenumbers considered herein. Since this work is 
principally concerned with resonant interactions, c, and S were mainly chosen to give 
wall modes having c, similar to those for Tollmien-Schlichting (TS) modes. This was 
in order to allow the possibility of resonant triads formed from a mixture of mode 
types. Such values of c, and S have a tendency to produce strong linear interactions 
and ensuing very severe linear instability, as is shown by the c, = 1.0 case of figure 
1, where S = 0.15. We can think of this as due to TS and F modes having opposite 
energy signs in an appropriate choice of reference frame. If modes of differing energy 
signs of two uncoupled systems are close to each other in some parameter space, then 
on coupling the systems they will interact and product linear instability (see for 
example Cairns 1979 ; Craik & Adam 1979). It should be noted, however, that there 
may be difficulties in applying these energy considerations to flows containing 
critical layers (see Craik 1985, 55).  

For the F modes of figure 1,  c, decreases rapidly with wavenumber a. It is easy to 
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of wall damping is as follows: 

c - 5 (Ci +S/rnL?)k 

0 ---___ 

Thus for small values of c,,, as we have in figure 1, as a increases so c, decreases as 
the inverse square of a; this is what is here observed. For the TS mode, c, at first 
increases, but abruptly starts to decrease on reaching a certain closeness to the F- 
mode eigenvalue curve. After this point, the TS-mode curve mimics the F-mode 
curve. These two modes are in fact interacting, as is demonstrated by the curves for 
ci. There is a huge 'bubble' of instability, the F mode being unstable and the TS 
mode stable, which commences at about the same value of a as the sudden change 
in the slope of c, for the TS mode ; the instability extends beyond the upper limit of 
the investigated wavenumbers a. The F and TS modes are analogous to the complex- 
conjugate pairs of the classical Kelvin-Helmholtz instability, with the important 
difference that the c, values for the two modes remain distinct rather than coalescing. 
The non-coalescence of the modes is due to the dissipative influence of viscosity. 

A stiffer wall (c,, = 0.8 and S = 0.15) produces a general increase in c, for the F 
mode whilst not affecting the corresponding TS value very much (figure 1). Thus the 
TS and F modes do not come as close to each other as for the previous case, and the 
c, for the TS wave has no abrupt changes of slope. The interaction is weaker than for 
the less stiff wall, certainly for the range of wavenumbers considered: c, for the F 
mode has a smaller maximum value. Another consequence of the weaker interaction 
is that the TS mode is less damped (ci - -0.05 rather than -0.15). 

The linear modal interactions behave rather like the modal coalescence of 
Carpenter & Garrad (1986), of Willis (1986), and of Thomas & Craik (1988), except 
that the values of c, for the two interacting modes remain distinct rather than 
merging as is the case for true coalescence. The dispersion curves for ci form upper 
and lower branches of a 'bubble', just like true coalescence, these typically being 
unstable and damped respectively (figure 1). The lack of proper coalescence may 
perhaps be due in part to the particular choices of parameter values used here (for 
example, the wall being relatively less or more flexible than those considered by 
Carpenter & Garrad and Willis, although it is not very meaningful to make such 
comparisons since the models are markedly different) or to the basic wall model itself, 
which is much simpler than that of the earlier authors. Willis considered the same 
wall model as Carpenter & Garrad, and found coalescence only with a viscous 
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FIGURE 2. Eigenfunctions and adjoints: m = 1.1, c, = 0.5, d = 0, S = 0.15, u = 0.29056, R = R, = 
2562.8. (a) TS mode, c = 0.4071-0.0198i: -, 9,; ---, -.-, $,; ---, $I. (b )  F mode, c = 
1.1914+0.0009i: legend as (a). (c) a = 0.6, S mode, c = -0.1122-0.0413: legend as (a). ( d )  u = 
0.6:-, F mode, c = 0.6846+0.0856, q5,; ---, ---, TS mode, c = 0.4776-0.1166i, q5,; ---, 

substrate present. He conjectured that it also occurs in the presence of an inviscid 
substrate, but only for complex values of wavenumber and frequency, and is 
consequently much harder to observe in this case. 

The eigenfunctions of the TS, F and S classes have distinctive shapes, as can be 
seen from figure 2. Here and elsewhere all eigenfunctions 9 and adjoints $ are 
normalized to unity at z = 1.7208, that is at five displacement thicknesses from the 
wall; this normalization was used by Hendriks (appendix to Usher &, Craik 1975). 
The eigenfunction for the TollmienSchlichting wave is depicted in figure 2 (a), and 
is very similar to a typical rigid wall TS eigenmode. This is also true of the adjoint 
eigenfunction. 

The F-mode eigenfunction is completely different in shape to that of the TS mode, 
as can be seen from figure 2 (b ) .  The normal velocity (of which 9 is a measure) has its 
maximum at the wall and decreases rapidly with increasing z. This is of course 
expected for wall modes. The large value of q5w (that is, 9 evaluated at  the wall) is 
a consequence of normalization being imposed in the free stream rather than at the 
wall. The F-mode adjoint eigenfunction also has a characteristic shape (figure 2b), 
with an extremely small imaginary part. 

The S-class mode eigenfunction, illustrated in figure 2(c),  has a real part which 
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bears some resemblance to  q5, for TS modes, although there is a ‘ kink ’ near the wall. 
The shape of the S-class eigenfunction is in fact just like that of the KH-mode-class 
eigenfunction given in Sen & Arora (1988), and we may therefore state with 
confidence that these classes are equivalent. Note that the S-mode adjoint 
eigenfunction (figure 2 c )  bears no resemblance to that for the TS mode. 

Figure 2 ( d  ) depicts an F mode and a TS mode at  a wavenumber of a = 0.6, larger 
than that for figures 2 ( a )  and 2 ( b ) .  Here the TS and F modes are interacting linearly. 
The most remarkable feature is that q5, for the F mode has changed drastically in 
shape from that of figure 2 ( b ) ,  and now is virtually indistinguishable from a TS mode. 
The imaginary part q5i has retained its profile, albeit reflected about the z-axis and 
considerably increased in magnitude. Comparison of figures 2 ( d )  and 2 (a )  reveals 
much less dramatic changes for the TS mode - the main one being an increase in the 
size of di. The character of the F-mode eigenfunction is dependent upon whether c, 
is greater or smaller than unity : if c, > 1, then there is no critical layer. Note that F 
modes can be linearly unstable even for c, > 1 ; this is in agreement with the findings 
of Sen & Arora (1988) and Carpenter & Gajjar (1990). 

5.2. Walls with damping 

Introduction of linear damping d to the wall model can have a significant effect on 
these modal interactions, as we shall now see. In  figure 3 co has a value of 0.6; the 
restoring-force parameter S = 0.15 is however the same as for the examples in figure 
1. Thus the instability due to modal interaction has a strength intermediate to those 
earlier examples. The plots of c, and ci for the TS and P modes for the D = 0.05 case 
of figure 3 are similar to those in figure 1, except that the TS mode is now less damped 
than the F mode for wavenumbers a less than about 0.6. The F mode again forms the 
upper branch of the ‘bubble’, which is however displaced to  wavenumbers a little 
higher than that shown in figure 1. The maximum value of c, for the F mode is about 
0.08, indicating a moderately strong instability. 

A larger damping factor d = 0.1 radically alters the characteristics of the 
dispersion curves (figure 3). The c, curves for the TS and F modes now cross one 
another, a t  a z 1.0, and the region of instability extends to smaller wavenumbers. It 
is now the TS mode which is unstable : it has exchanged roles with the F mode, which 
is now damped. This reversal of the modal stability characteristics is due to the 
fundamentally different effects of damping on the TS and F modes: the former are 
Class A and hence destabilized by damping, whilst the latter being Class B are 
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stabilized. These energy classes were postulated by Benjamin (1963) and Landahl 
(1962). Note that the maximum value of ci (for the range of wavenumbers 
considered) is reduced from - 0.07 to - 0.05 by the increase in damping ; but this 
beneficial effect must be weighed against the increase in the range of wavenumbers 
for which there are unstable eigenmodes. 

The S-mode-class waves are rendered less stable by wall damping, suggesting that 
they are Class A, (and hence perhaps upstream-propagating TS waves). There has 
been very little work done on upstream-propagating TS waves for any 0s problem, 
other than the derivation of formal bounds for the eigenvalues (Joseph 1968, 1969), 
although Mack (1984) does briefly mention them in the context of the spatial 
stability problem. However, the eigenvalues for these waves are more sensitive to 
changes in the wall parameters than is expected for fluid modes, to such an extent 
that the author was unable to keep track of them or to find rigid-wall analogues. This 
suggests that they are in fact upstream-propagating wall modes. Sen & Arora (1988) 
clearly take the latter view, since they regard their KH modes as 'stationary periodic 
ripples ' in the limit of IcI + O .  Examination of the adjoint eigenfunction (figure 2c)  
also leads to the conclusion that the S mode is wall-based. 

5.3. OtherJuid modes 
In  addition to the three mode types already described, there also exist higher-order 
fluid modes (see for example Mack 1976, where these are discussed for the rigid-wall 
configuration) and oblique Squire modes of v". The former category falls into two 
distinct groups, comprising discrete and continuous parts of the eigenvalue spectrum. 
These are in general heavily damped and hence often considered to be of little 
practical interest, although as a or R increases they migrate towards c = 0 in the 
(complex) phase-speed plane (that is, they become less damped). It has been 
suggested that the continuous spectrum plays a role in the transfer of energy between 
the boundary layer and the free stream (Corner, Houston & Ross 1976), because the 
associated perturbation velocities can remain significant at  the edge of the boundary 
layer and beyond. An example of a higher-order (HO) mode belonging to the discrete 
part of the spectrum is depicted in figure 4, where a damping level d = 0.2 applies. 
The HO eigenfunction and adjoint and those of the F mode are shown in figures 
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5(a)-5(c), for a wavenumber of 0.6. The TS and F eigenmodes (real parts) cross a t  
ct x 0.86, as do the F and HO eigenmodes at  01 x 0.65, just larger than the value a t  
which we have sample plots of the eigenfunctions. The TS mode is unstable, with ci 
having a maximum value of - 0.05. The F mode is strongly damped owing to the 
presence of wall damping, with ci x -0.1; and the HO is rather more heavily 
damped, having ci x -0.2. The F mode strongly resembles a typical TS mode, as was 
the case in figure 2 (d  ). The HO mode also has some similarity with TS modes, but 
there are distinctive 'wobbles' in the profile of 4,. The peaks in q5i for the two modes 
are located at the critical point, where c, = a. Examination of the adjoints reveals 
remarkable similarities between them (and considerable differences from any 
previously considered). It seems that these modes are interacting in some way, 
although there is no evidence of this in the behaviour of ci for these modes in figure 
4. We are in no doubt that the F mode has been correctly identified - the dispersion 
curves for d = 0 (no wall damping) are qualitatively very similar, in both real and 
imaginary parts, to  those cases already considered in figure 1, though we do not 
present them herein. 

Squire modes are solutions to the homogeneous version of (26), that is 

B:, - [y* + iyE(~-c, ,)]  B,, = 0. (52) 

The outer boundary condition is the same as for the cross-flow velocities GI, 2, that is 
(36), but a t  the wall we have the simple condition B,,(O) = 0. This is because Squire 



Resonant triad interaction in flows over boundaries 43 1 

modes have no vertical velocity component, and hence cannot induce any 
displacement of the wall from its undisturbed position. Thus in the linear Eimit there 
is no difference between Squire modes over flexible walls and their rigid-wall 
counterparts, at the same values of a and R. The ‘Squire equation’ (52) is an 
eigensystem in its own right, with a spectrum of eigenvalues cSq. It is known that 
these are all damped (see Davey & Reid 1977, where the mathematically equivalent 
problem of temperature modes in a stratified fluid is studied ; and also Murdock & 
Stewartson 1977, where the plane Poiseuille problem is investigated via a model 
equation). However, they may resonate linearly or nonlinearly with the eigenvalues 
of the 0s system, either exactly or approximately, and therefore should not be 
overlooked. 

Solutions to the Squire-mode equation are somewhat similar to the two viscous 
solutions of the 0s equation. There is a continuous spectrum of damped modes with 
c, = 1, together with a set of discrete modes having smaller c,. Interactions between 
TS and Squire modes in boundary-layer flow have been examined for the case of 
spatial disturbances by Nayfeh (1985) : he found that the interactions could be 
strong, implying that they represent an additional means of amplifying three- 
dimensional effects. Linear resonance between 0s and Squire modes has been studied 
by Gustavsson & Hultgren (1980) for plane Couette flow, by Gustavsson (1981) for 
plane Poiseuille flow, and by Hultgren & Gustavsson (1981) for boundary-layer flow. 
Herbert (1983, 1988) has studied forms of nonlinear instability in rigid-wall flows 
(that is, three-dimensional effects that follow the TollmienSchlichting instability) ; 
he found that near-resonant triads can be formed between a TS wave and a pair of 
(highly damped) Squire modes. 

A few Squire modes were located using the PA scheme referred to above : these are 
displayed in table 3 below, and a typical eigenfunction is pictured in figure 5(d ). Note 
that the outer limit of integration is 8, not 2.5s; convergence was severely impaired 
at the larger value. 

6. Nonlinear results 
6.1. Triads of TS waves 

Resonant triads of the Craik form, comprising three TS waves, were located mainly 
for one set of wall parameters, but considering a side range of wavenumbers a and 
Reynolds numbers R, and are presented in figures 6 8 ,  together with rigid-wall 
counterparts. 

It will be seen from figures 6-8 that the quadratic interaction coefficient a3 for the 
streamwise modes always remains O(1) in magnitude, in marked contrast to its 
oblique counterpart a,, the modulus of which increases very substantially with both 
wavenumber and Reynolds number. These results have similarities with those of 
Volodin & Zel’man (1979) for spatial wave modes. It would appear from the a = 1.0 
cases (figure 8) that a, may decrease for sufficiently large R, although the evidence 
is only provided by a single data point. Note that by symmetry a2 = a,, and the ai 
are all complex. 

The spanwise wavenumber /3 of the oblique constituents of the triads generally 
increases with increasing a but decreases with increasing R. The propagation angle 
8 of these waves decreases with both wavenumber and Reynolds number, as will be 
shown later. 

Comparison of the present results with those of Smith & Stewart’s (1987) 
asymptotic analysis is not straightforward. This is because the latter authors assume 
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that the resonating wave modes, having frequencies o that are large but less than 
O(Ra) as R --f co , lie asymptotically close to the lower-branch neutral curve, conditions 
which are certainly not satisfied by the triads of figures 6-8. 

The interaction coefficients a,, a3 which are presented in figures 6-8 are complex, 
not real, quantities and so it follows that finite-time blow-up of the (truncated) 
equations (50) is possible, this being an important difference from the scenario 
studied by Smith & Stewart. Also, the propagation angles 6 = c0s-l (a /2y)  for the 
oblique-mode triad constituents are never very close to the inviscid, high-frequency 
value of 60" obtained by asymptotic analysis: they are always less than this, and 
indeed decrease with increasing a or R. The wall parameters were selected to emulate 
a wall that is stiff enough to preclude linear modal interactions. The real part of 
phase speed, c,, is generally higher than for the equivalent rigid-wall case. It is 
difficult to make any firm observations on the effect of surface compliance on linear 
stability from these results, except to say that in the main both the streamwise and 
oblique modes are a little more amplified (or less damped) than their rigid-wall 
analogues ; this indicates that the wall parameters selected here are not beneficial in 
promoting transition delay. 

Quadratic interaction coefficient moduli are plotted against wavenumber at  
constant R in figure 6 ( a ) ,  along with the corresponding rigid-wall values. It will be 
seen that the difference between the two cases in terms of these coefficients is only 
small, although the compliant-wall values are usually larger. A comparison of the 
propagation angles 6 of the oblique constituents of the triads for the two 
configurations (figure 6b) reveals that the obliquity is consistently greater for 
compliant wall flow than for rigid wall flow. Quadratic interaction coefficient moduli 
and propagation angles are plotted against Reynolds number for (fixed) a = 0.29056 
in figure 7 ,  and for a = 1.0 in figure 8. Here differences between the rigid and 
compliant cases are a little more apparent, although they remain broadly similar. 
For a = 1.0, the oblique coefficients at  first increase in magnitude with R, but 
eventually begin to decrease. The propagation angles 6 decrease with R as they do 
with a, but more markedly. 

= 2): they 
cannot be presented fully because of lack of space. Once again, there is no consistent 
trend in the linear stability data, although ci is smaller than for the less stiff wall and 
larger than for the rigid wall (which is as expected, since the rigid wall corresponds 
to the limit of infinite stiffness). The quadratic interaction coefficients are however 
always a little smaller in magnitude than for the less stiff wall ; this indicates that 
wall flexibility has a reinforcing effect on the strength of resonant triad interactions, 
even though no wall modes are participating. 

6.2.  Mixed-mode triads without wall damping 

It was envisaged at  the outset that resonant triads comprising a mixture of TS and 
other modes would be of particular interest. However, as has already been 
mentioned, location of such triads was hampered by the presence of modal 
coalescence or near-coalescence. Indeed, the author was unable to locate any mixed- 
mode triads that were free from linear modal interaction. 

It is quite difficult to locate any triads with oblique wall (F) mode constituents: 
this is because the eigenvalue c" for such modes (the free-wave speed on the wall) 
varies with a accordinn to 

A few results have also been obtained for a slightly stiffer wall 
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FIGURE 9. Triad comprising three wall modes: a = 0.8, R = R, = 2562.8, m = 2, c0 = 1.2, d = 0, 
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U. B rz c r  ci 4 I%I la11 

0.3310 1974.4 0.3824 0.0039 -0.0068 0.31 15.55 
(a )  { ::: 0.2508 2171.3 1.1577 -0.0002 0.0001 2.39 89.48 

(6) 1.2 0.8729 1451.7 0.7872 0.111 0.0128 1.39 130.45 

0.5317 10276.0 0.3525 -0.0390 -0.1125 0.60 6373.0 
(') { i:: 0.8101 7878.4 0.3635 -0.0418 -0.0904 4.22 8544.0 

TABLE 1 .  Compliant wall, resonant triads. R ,  = 2562.8. (a )  R = 2562.8, m(O) = 2.0, c, = 1.2, d = 0, 
S(O) = 0.1 : first row is a triad of three TS modes, second row is a triad of three F modes (figure 9) ; 
(6) R = 2562.8, m(O) = 1 . 1 ,  c, = 0.8, d = 0, S(O) = 0.15: triad of three F modes; (c) R = 15000, first 
row is rigid wall, for second row m(O) = 2.0, co = 0.5, d = 0, So) = 1.0: in both cases triad comprises 
a streamwise TS mode and two oblique HO modes. 

in the absence of wall damping. ,Note the differences between (53) and (51) : the factor 
a/2y  is due to the particular form of tension we have selected; but the extra 4 in the 
restoring-force term arises from the periodicity exp{i(;ax ,/3y -$xc"t)] that is required 
for Craik-type resonance. The effect is generally to make c" much larger than c, which 
obviously is detrimental to the location of resonant triads. 

Triads comprising three wall modes have nevertheless been located, and two 
examples are given in table 1. The oblique interaction coefficients la,! are large, being 
O(lO0) whilst the streamwise coefficient la,l remains O(1). (Note that in each case 
there is some linear instability, and for the second wall-mode triad presented ci and 
Ei are both rather large at 0 ( 1 O p 2 . )  A TS-mode triad at the same values of a, R and 
wall parameters as one of the wall triads is also given, and it will be observed that 
a, for the TS triad is substantially less than for the wall-mode triad (note also the 
comparative smallness of the propagation angles 0 for the oblique modes in both 
cases). The eigenfunctions, their adjoints and the cross-flow velocity are presented in 
figure 9. 

Triads formed of a streamwise TS wave and a pair of oblique HO modes have been 
located at a Reynolds number of 15000, and are presented in table 1 for both rigid- 
wall and compliant-wall configurations. The oblique modes are significantly damped 
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FIQURE 10. As figure 4; marked points are the locations of streamwise constituents of resonant 
triads (see also figure 12, table 2). 

in the linear regime (ci x 0.1) but nevertheless have remarkably large oblique 
quadratic interaction coefficients a,, these being O(8000) in modulus for the 
compliant wall and O(6000) for the rigid wall ; the a3 remain O( 1) in magnitude. These 
particular triads could be deemed of no practical significance because of their rather 
strong linear damping, but examples exhibiting less severe damping may well be 
possible. 

6.3. Mixed-mode triads with wall damping 
The presence of linear modal interaction has a strong influence on the nature of 
resonant triad interactions. Figure 10 shows dispersion curves for three modes, 
namely a TS, an F and an HO fluid mode. A damping coefficient d = 0.2 applies here. 
The TS- and F-mode phase speeds (real parts) cross at a x 0.86, and a significant 
linear interaction is indicated by the relatively large magnitude of ci for both these 
modes (see figure 4). This particular scenario admits a wide variety of resonant triad 
configurations, involving all three of the different mode types here present. Triads 
have been located at the various points marked on the curves. Points A, B, C, D, E 
indicate the eigenvalues of streamwise constituents of resonant triads, where all three 
participating modes are of TS type. In each case the streamwise mode is undergoing 
a linear interaction with the streamwise F mode (the interaction occurs over a wide 
range of wavenumbers a, as can be inferred from figure 4). It is the TS mode which 
is driven unstable (ci x 0.05 at  most), but the wall damping mitigates the severity of 
the instability (if d = 0 rather than 0.2, then ci x 0.088 at most for the F mode). 
Points X, Y, Z correspond to a streamwise wall mode interacting resonantly with a 
pair of oblique TS modes. Some of the triads located are tabulated in table 2. The 
various points A-E, X-Z just represent particular examples of the triads that may 
be constructed : there are in fact two continua of points representing triads, each of 
which extends some distance along the TS- and F-mode dispersion curves. 

The quadratic interaction coefficients for the heterogeneous TS triads are highly 
interesting as can be seen from figure 11 : lull has a sharp spike centred at  about 
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Quadratic interaction coefficients lull, la,l versus wavenumber a : parameters as 
figure 4. Triads comprise three TS modes. -, la,l; ---, lull. 

U B a cr C1 4 I%I la11 

[ X  
0.8 1.4693 525.4 0.5115 -0.1087 -0.0482 72.32 50.63 

1.0 0.4571 1476.1 0.4579 -0.1012 -0.0015 0.40 76.1 
0.9 0.9286 872.2 0.4803 -0.1046 -0.0203 4.00 85.15 

1 1.2 0.5698 1450.3 0.5412 -0.1951 -0.0576 2.59 205.1 
2 1.2 1.0075 1023.4 0.5412 -0.1951 0.0112 7.23 107.9 
3 1.2 0.5704 1449.6 0.5117 0.0446 0.001 1 0.41 338.1 

TABLE 2. Compliant wall, resonant triads (figure 10). R, = 2562.8, R = 2000, do) = 2.0, c, = 0.5, 
d = 0.2, S(O) = 0.3: (a) triads formed of one streamwise wall wave and two oblique TS waves; (6 )  case 
1 : HO wave and two oblique wall waves ; case 2 : HO wave and two oblique TS waves ; case 3 : three 
TS waves ; case 4 : TS wave and two oblique wall waves. 

4 1.2 0.8752 1130.9 0.5117 0.0446 -0.0754 4.87 266.1 

a = 1.0, with maximum magnitude of approximately 2000. The streamwise coefficient 
a3 behaves much less spectacularly, being O(10) in magnitude and having its 
maximum in the region a = 0.84.9.  Note however that la,l is an order of magnitude 
larger than has hitherto been normal for TS triads. The propagation angles 8 are 
somewhat larger than previously, decreasing with a from - 69" to about 57". 

The triad located at a = 1.0 (near the tip of the spike in lull) has cross-flow velocity 
and derivatives which are large in magnitude relative to other triads, and it is these 
functions which give rise to the unusually large value of lull. I t  is probable that the 
large values of 6 are due to linear interaction between an oblique TS mode and a 
Squire mode at  a x 1.0, /? 1.104, Er x cSqr x 0.5010 (table 3). (This is not a true 
linear resonance, such as was studied by Gustavsson & Hultgren (1980), since 15~ and 
cSqi are not close to each other). 

The interactions at points X, Y, Z are also interesting (table 2, figure 10) : at point 
X, the streamwise triad component experiences a stronger resonant interaction than 
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B B 

a 
0.95 
0.99 
0.998 
0.999 
1 .o 
1 .o 
1.1 

B 
1.1407 
1.1154 
1.1066 
1.1053 
1.1041 
1.1041 
0.8582 

CT 

0.4980 
0.5006 
0.501 1 
0.501 1 
0.5012 

0.5068 
- 

ci 
0.0509 
0.0506 
0.0505 
0.0505 
0.0504 

0.0481 
- 

4 
- 0.0323 
-0.0325 
-0.0323 
-0.0323 
- 0.0323 
- 

- 0.0208 

la31 

21.98 
17.70 
16.69 
16.58 
16.4 
- 
4.18 

la11 
429.5 

1201 
1783 
1895 
2020 
- 

477.8 

C W T  

0.5097 
0.5026 
0.5012 
0.5010 
0.5008 
0.2845 
0.4848 

cmi 
-0.2852 
-0.2815 
-0.2808 
-0.2807 
-0.2806 
-0.1644 
-0.2720 

€ 

0.0117 
0.0020 
0.0001 

-0.0001 
-0.0004 

- 0.0220 
- 

TABLE 3. OrA3ommerfeld resonant triads and Squire equation eigenvalues. Wall parameters as 
in table 2. We define 6 = cwr-Cr. See also figure 11. 

its oblique counterparts (laa[ > lull), though as a increases this interaction weakens 
rapidly unlike the oblique ones. The oblique-wave propagation angle 0 also changes 
substantially as a increases from 0.8 to 1.0. 

Points 1 4  of figure 10 and table 2 designate the linear eigenvalues of the 
streamwise constituents of four different resonant triads that have been located for 
a streamwise wavenumber 01 = 1.2. For points 1 and 2 the streamwise mode is a 
higher-order fluid mode, whereas for points 3 and 4 the streamwise mode is a TS 
mode. The two oblique constituents of these four triads are of the following mode- 
classes: for point l ,  wall (F); for point 2, TS; for point 3, TS; for point 4, wall (F). 
For each of the triads the oblique modes experience strong resonant interaction, as 
indicated by the values of lull, which are all O(100). The triad at point 3, comprising 
three TS waves, has the largest value of IaJ, but by contrast also has the smallest 
value of the streamwise coefficient luJ. 

Dispersion curves of c" versus the transverse wavenumber 8, at fixed values 1 .O and 
1.2 of a are given in figure 12. Both oblique TS- and oblique F-mode eigenvalues are 
shown, plus the locations of computed resonant triads. A linear interaction is taking 
place between the TS and F modes, which increases with increasing a. The mode- 
crossing phenomenon that is a feature of linear interactions in the presence of wall 
damping is observed to occur at a = 1.2, but not at the smaller value of a. 
Eigenfunctions and cross-flow velocity for the triad a t  point 1 are given in figure 13. 
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FIGURE 13. Resonant triad at point 1 of figure 10. (a)  Eigenfunctions: -, $3r; ---, q53i; -.-, 
&; ---, (b )  Cross-flow velocity: -, G l r ;  ---, G l i .  

I n  figure 13, we see that $3 has the distinctive profile of higher-order fluid modes ; 
and $3i has a strong peak, which is in fact located a t  the critical point 2,. The oblique 
F-mode looks like a TS mode, but the maximum value is in fact a t  the wall. The 
cross-flow velocity B, is very much like that for a typical rigid-wall TS-mode triad 
(Usher & Craik 1975). 

When considering the relative magnitudes of quadratic interaction coefficients a,, 
a, for different resonant triads, and even within the same triad, it must be 
remembered that these magnitudes are dependent on the normalizations employed 
for $! and $j. This is particularly important when comparing wall modes (F or S) 
with fluid modes (TS or HO). The obvious normalization to employ for wall modes 
is to set $w equal to  some constant, say unity, but that is not very suitable for fluid 
modes, especially when one is also considering the rigid-wall problem. We have 
imposed normalization a t  a point away from the wall because this permits 
investigation of both scenarios. 

7. Conclusions 
7.1. The linear regime 

We have found and examined five distinct classes of wave mode for the problem of 
Blasius flow over flexible walls, which we labelled TS, HO, F, S and Squire modes. 
The Tollmein-Schlichting (TS) class has very similar properties to its rigid-wall 
counterpart, as does the HO class of discrete higher-order wave modes. The class of 
wall modes which we have termed F modes is identifiable with the TWF of Carpenter 
& Garrad (1986), and the CIFI of Yeo (1986) ; the S class corresponds to the KH class 
of Sen & Arora (1988), and to  the divergence class of Carpenter & Morris (1990). 

The stability of TS modes is determined in the absence of modal interaction 
principally by the values of wavenumber a and Reynolds number R, being much less 
dependent on wall parameter values. The F modes, being fundamentally inviscid in 
character, are typically very close to a state of neutral stability, again provided they 
are not participating in modal interaction. The S modes that have been located for 
various walls have a tendency to be very slow moving (ci x 0 ) ,  usually in the upstream 
direction, and have small to  moderate (-0.05 < ci < 0) rates of linear damping. We 
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believe these to be wall modes, although this has not been definitely established. The 
HO modes tend not to be especially interesting, at least in the linear regime, as they 
are strongly damped except for very large values of a and/or R .  

Linear modal interaction between TS waves (Class A) and F waves (Class B) 
almost invariably produces strong instability of one or other of the participating 
modes. Such interactions have some similarity to the classical Kelvin-Helmholtz 
instability -the ci versus a curves for the two modes have the familiar ‘bubble’ 
shape, the extent of this bubble indicating the range of wavenumbers over which 
linear interaction is occurring. There are important differences, however : the c, 
values of the modes do not coincide during the interaction but remain distinct, that 
is there is no coalescence ; and the phenomena of quasi-Kelvin-Helmholtz instability 
and modal exchange of identities are not mutually exclusive, unlike non-dissipative 
cases such as that studied in Thomas & Craik (1988). 

Clearly such instabilities are most undesirable if the aim is to delay transition, and 
they are best avoided by choosing walls which have sufficient stiffness to render c, 
for the F modes appreciably larger than c, for TS modes at all relevant values of a 
and R .  

7 .2 .  Resonant triad interactions 
We have searched for and located numerous examples of Craik-type resonant triads 
(Craik 1971), for various values of a, R and of the wall parameters m, c,,, d,  S.  The 
located triads comprise a variety of combinations of TS, F and HO modes. Triads 
composed of three TS waves show non-trivial but small differences from rigid-wall 
analogues regarding both the magnitudes of the quadratic interaction coefficients a, 
and a, and their respective variations with a and R .  It has been demonstrated that 
triads of three wall modes (that is, F modes) are possible for our spring-backed 
tension-membrane wall model. These triads are not found at such low values of a as 
TS triads, because of differences in the a-variation of c, and E,.. Meaningful 
comparison of quadratic interaction coefficients for wall-mode triads with those for 
TS triads is not easy because of the difficulty in defining a mutually satisfactory 
normalization of the respective eigenfunctions. 

Triads comprising a streamwise TS mode and two oblique (strongly linearly 
damped) HO modes have been found for both rigid- and compliant-wall cases. These 
are notable principally for the remarkably large magnitudes of the quadratic 
interaction coefficients : lull - O( 1000). The streamwise, reasonably near-neutral TS 
mode has a less exceptional interaction coefficient, though: la,l - O(1).  It is known 
(Mack 1976) that for HO modes ci approaches zero with increasing a or R (as does c,) ,  
implying that such resonant-triad interactions may well be of physical significance 
at large wavenumbers. Large values of R are of course unlikely to be practically 
important however, as they imply turbulent flow regimes. 

It appears that Squire modes can greatly affect the strength of resonant triad 
interactions at  quadratic order, if the real parts of the phase speeds of the Squire 
mode and one of the resonant modes are very close. In conclusion, it is clear that 
flexible walls greatly enrich the possibilities for the formation of resonant triads, but 
linear instabilities in the form of modal interactions tend often to be present for the 
required parameter values. The strength of these often vigorous instabilities can be 
reduced by the introduction of judicious amounts of wall damping, but this tends to 
further complicate the phenomenology of the interactions. 

The majority of this work was performed whilst the author was in receipt of an 
SERC(CASE) studentship at the University of St. Andrews, supervised by Professor 
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P. K. Sen of the Indian Institute of Technology, Delhi, for instruction in 
computational methods during a three-month visit of the author to Delhi in 1988, to 
the IIT authorities for providing a visiting research scholarship, and to the 
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